Skip to content Skip to footer

Who we are

Our website address is: https://shipip.com.

What personal data we collect and why we collect it

Comments

When visitors leave comments on the site we collect the data shown in the comments form, and also the visitor’s IP address and browser user agent string to help spam detection.

An anonymized string created from your email address (also called a hash) may be provided to the Gravatar service to see if you are using it. The Gravatar service privacy policy is available here: https://automattic.com/privacy/. After approval of your comment, your profile picture is visible to the public in the context of your comment.

Media

If you upload images to the website, you should avoid uploading images with embedded location data (EXIF GPS) included. Visitors to the website can download and extract any location data from images on the website.

Contact forms

Cookies

If you leave a comment on our site you may opt-in to saving your name, email address and website in cookies. These are for your convenience so that you do not have to fill in your details again when you leave another comment. These cookies will last for one year.

If you visit our login page, we will set a temporary cookie to determine if your browser accepts cookies. This cookie contains no personal data and is discarded when you close your browser.

When you log in, we will also set up several cookies to save your login information and your screen display choices. Login cookies last for two days, and screen options cookies last for a year. If you select "Remember Me", your login will persist for two weeks. If you log out of your account, the login cookies will be removed.

If you edit or publish an article, an additional cookie will be saved in your browser. This cookie includes no personal data and simply indicates the post ID of the article you just edited. It expires after 1 day.

Embedded content from other websites

Articles on this site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.

These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.

Analytics

Who we share your data with

How long we retain your data

If you leave a comment, the comment and its metadata are retained indefinitely. This is so we can recognize and approve any follow-up comments automatically instead of holding them in a moderation queue.

For users that register on our website (if any), we also store the personal information they provide in their user profile. All users can see, edit, or delete their personal information at any time (except they cannot change their username). Website administrators can also see and edit that information.

What rights you have over your data

If you have an account on this site, or have left comments, you can request to receive an exported file of the personal data we hold about you, including any data you have provided to us. You can also request that we erase any personal data we hold about you. This does not include any data we are obliged to keep for administrative, legal, or security purposes.

Where we send your data

Visitor comments may be checked through an automated spam detection service.

Your contact information

Additional information

How we protect your data

What data breach procedures we have in place

What third parties we receive data from

What automated decision making and/or profiling we do with user data

Industry regulatory disclosure requirements

Autonomous Ships Can Use COLREGs Effectively

Autonomous Ships – Rolls-Royce has completed a research project it says demonstrates that the operation of autonomous vessels can meet, if not exceed, current collision avoidance (COLREG) rules.

The MAchine eXecutable Collision regulations for Marine Autonomous Systems (MAXCMAS) project included partners Lloyd’s Register, Warsash Maritime Academy (WMA), Queen’s University Belfast and Atlas Elektronik (AEUK).

The team found that use of newly developed algorithms allowed existing COLREGs to remain relevant in a crewless environment, finding that artificial intelligence-based navigation systems were able to enact the rules to avoid collision effectively, even when approaching manned vessels were interpreting the rules differently.

A key aspect of the research was the use of WMA’s networked bridge simulators. The simulators were used to analyze reactions from the crew when faced with a range of real-world situations and subsequently hone the MAXCMAS algorithms.

Rolls-Royce Future Technologies Group’s Eshan Rajabally, who led the project, said: “Through MAXCMAS, we have demonstrated autonomous collision avoidance that is indistinguishable from good seafarer behavior, and we’ve confirmed this by having WMA instructors assess MAXCMAS exactly as they would assess the human.”

During the development project, Rolls-Royce and its partners adapted a commercial-specification bridge simulator as a testbed for autonomous navigation. This was also used to validate autonomous seafarer-like collision avoidance in likely real-world scenarios. Various simulator-based scenarios were designed, with the algorithms installed in one of WMA’s conventional bridge simulators. This also included Atlas Elektronik’s ARCIMS mission manager Autonomy Engine, Queen’s University Belfast’s Collision Avoidance algorithms and a Rolls-Royce interface.

During sea trials aboard AEUK’s ARCIMS unmanned surface vessel, collision avoidance was successfully demonstrated in a real environment under true platform motion, sensor performance and environmental conditions.

“The trials showed that an unmanned vessel is capable of making a collision avoidance judgment call even when the give-way vessel isn’t taking appropriate action,” said Ralph Dodds, Innovation & Autonomous Systems Programme Manager at AEUK. “What MAXCMAS does is make the collision avoidance regulations applicable to the unmanned ship.”

The MAXCMAS technology and system has been thoroughly tested both at sea and under a multitude of scenarios using desktop and bridge simulators, says Rolls-Royce, proving that autonomous navigation can meet existing COLREG requirements.

 

SOURCE READ FULL ARTICLE