Skip to content Skip to footer

Who we are

Our website address is: https://shipip.com.

What personal data we collect and why we collect it

Comments

When visitors leave comments on the site we collect the data shown in the comments form, and also the visitor’s IP address and browser user agent string to help spam detection.

An anonymized string created from your email address (also called a hash) may be provided to the Gravatar service to see if you are using it. The Gravatar service privacy policy is available here: https://automattic.com/privacy/. After approval of your comment, your profile picture is visible to the public in the context of your comment.

Media

If you upload images to the website, you should avoid uploading images with embedded location data (EXIF GPS) included. Visitors to the website can download and extract any location data from images on the website.

Contact forms

Cookies

If you leave a comment on our site you may opt-in to saving your name, email address and website in cookies. These are for your convenience so that you do not have to fill in your details again when you leave another comment. These cookies will last for one year.

If you visit our login page, we will set a temporary cookie to determine if your browser accepts cookies. This cookie contains no personal data and is discarded when you close your browser.

When you log in, we will also set up several cookies to save your login information and your screen display choices. Login cookies last for two days, and screen options cookies last for a year. If you select "Remember Me", your login will persist for two weeks. If you log out of your account, the login cookies will be removed.

If you edit or publish an article, an additional cookie will be saved in your browser. This cookie includes no personal data and simply indicates the post ID of the article you just edited. It expires after 1 day.

Embedded content from other websites

Articles on this site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.

These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.

Analytics

Who we share your data with

How long we retain your data

If you leave a comment, the comment and its metadata are retained indefinitely. This is so we can recognize and approve any follow-up comments automatically instead of holding them in a moderation queue.

For users that register on our website (if any), we also store the personal information they provide in their user profile. All users can see, edit, or delete their personal information at any time (except they cannot change their username). Website administrators can also see and edit that information.

What rights you have over your data

If you have an account on this site, or have left comments, you can request to receive an exported file of the personal data we hold about you, including any data you have provided to us. You can also request that we erase any personal data we hold about you. This does not include any data we are obliged to keep for administrative, legal, or security purposes.

Where we send your data

Visitor comments may be checked through an automated spam detection service.

Your contact information

Additional information

How we protect your data

What data breach procedures we have in place

What third parties we receive data from

What automated decision making and/or profiling we do with user data

Industry regulatory disclosure requirements

Weight of Freight – Navigating IMO 2023

The maritime and shipping industry – with more than 50,000 ships on the water – emitted 1.056bn t of CO2 in 2018, about 3pc of total global greenhouse gas (GHG) emissions. The recent Maritime Environment Protection Committee (MEPC) meeting in June 2021 laid down a concrete plan for minimising GHG emissions from ships by 50pc until 2050. According to the MEPC 76 meeting, vessels are required to calculate an Energy Efficiency Existing Ship Index (EEXI) and Carbon Intensity Indicator (CII) from 2023. What does this mean and what steps should be taken?

 

Understanding and calculating EEXI

Starting from 2023, each vessel above 400 Gt will require a one-off EEXI calculation to confirm that the vessel meets the energy efficiency design standards. An International Energy Efficiency (IEE) certificate will be awarded if the vessel meets those standards.

Take for instance, a basic 82,000 dwt Kamsarmax vessel with no energy saving devices installed:

Main engine (ME) maximum continuous rating (MCR) 14,280 kw
ME specific fuel oil consumption (SFOC) 171 gms/kwhr
Auxiliary engine (AE) MCR 5pc of main engine MCR (Assumed as per EEXI guidance)
AE SFOC 187 gms/kwhr
Vessel’s speed on the power speed curve (Vref) 15.09 knots at 75pc MCR
Fuel Constant 3.151
Reduction factor 20
EEDI/EEXI reference line parameters A = 961.79
C = 0.477

 

 Required EEXI:  [1-(Reduction factor/100)] * [EEXI reference line parameters A*{(Vessel’s DWT)^(minus EEXI reference line parameters C)}]
 (1-(20/100)) * (961.79*((82000)^(-0.477))) = 3.49 grams/ton-mile
 Attained EEXI:  [( pc of MCR * MCR * Fuel Constant * ME SFOC) + (5pc * MCR * Fuel Constant * AE SFOC)] / [DWT * Vref]
 ((0.75*14280*3.151*171)+(0.05*14280*3.151*187))/(82000*15.09) = 5.00 grams/ton-mile

Based on the above calculations, the vessel does not meet EEXI’s requirements, because the attained EEXI (5.00 gms/t-mile) is greater than the required EEXI (3.49 gms/t-mile). So the vessel will have to reduce its MCR to comply with the EEXI regulation, and to attain the IEE Qualification.

 IEE Qualification:  [Required EEXI * (DWT * Vref)-( 5pc * MCR * Fuel Constant * AE SFOC)/(MCR * Fuel Constant * ME SFOC)
 (3.49*(82000*15.09)-(0.05*14280*3.151*187))/(14280*3.151*171) = 0.506

Based on the calculation above, the vessel can meet compliance standards if the main engine runs at 50.6pc MCR, where the attained EEXI matches the required EEXI. The vessel will be given the IEE certificate, if the main engine’s MCR continues to operate below 51pc and adjusts to the corresponding speed on the power speed curve (13.24 knots in this instance).

The formula to calculate EEXI was derived from the Energy Efficiency Design Index (EEDI). EEDI is applicable to new ships built on or after 1 January 2013. Vessels built on or after 2013, with a valid IEE are not required to calculate EEXI. Some of the variables used in the EEXI formula are listed below:

EEDI/EEXI reference line parameter values:

Ship type A B C
Bulk Carrier 961.79 dwt 0.477
Gas Carrier 1,120 dwt 0.456
Tanker 1,218.8 dwt 0.488
Container ship 174.22 dwt 0.201
LNG carrier 2,253.7 dwt 0.474

 

 Reference line  = a * b ^ (-c)
 Required EEDI / EEXI  = [1 – (Reduction factor/100)] * Reference line

 

EEDI reduction factor:

Reduction factors (in percentage) for the EEXI relative to the EEDI reference line
Ship type Ship size Reduction factor
Bulk carrier 200,000 DWT and above 15
20,000 and above but less than 200,000 DWT 20
10,000 and above but less than 20,000 DWT 0-20*
Gas carrier 15,000 DWT and above 30
10,000 and above but less than 15,000 DWT 20
2,000 and above but less than 10,000 DWT 0-20*
Tanker 200,000 DWT and above 15
20,000 and above but less than 200,000 DWT 20
4,000 and above but less than 20,000 DWT 0-20*
Containership 200,000 DWT and above 50
120,000 and above but less than 200,000 DWT 45
80,000 and above but less than 120,000 DWT 35
40,000 and above but less than 80,000 DWT 30
15,000 and above but less than 40,000 DWT 20
10,000 and above but less than 15,000 DWT 0-20*
LNG carrier 10,000 DWT and above 30
*    Reduction factor to be linearly interpolated between the two values dependent upon ship size.
The lower value of the reduction factor is to be applied to the smaller ship size.

 

Are vessels compliant once EEXI is achieved? What is CII?

The Carbon Intensity Indicator (CII) is a measure of how efficiently a ship transports goods or passengers – linking carbon emissions to vessel capacity and vessel movement. The ship is given an annual rating ranging from A to E. All vessels above 5,000 Gt are required to attain and document an annual operational CII, to be verified against the required annual operational CII, according to the MEPC 76.

The ship is then given an annual rating ranging from A to E, by comparing the attained annual CII of a ship with the direction and distance it deviates from the required CII (DD vector for short).

Ship type Ship size DD vectors (after exponential transformation)
exp(d1) exp(d2) exp(d3) exp(d4)
Bulk carrier dwt 0.86 0.94 1.06 1.18
Gas carrier 65,000 dwt and above dwt 0.79 0.89 1.12 1.36
less than 65,000 dwt dwt 0.85 0.95 1.06 1.25
Tanker dwt 0.82 0.93 1.08 1.27
Container Ship dwt 0.83 0.94 1.07 1.19
LNG carrier 100,000 dwt and above dwt 0.91 0.98 1.05 1.11
less than 100,000 dwt dwt 0.77 0.91 1.12 1.37

Required Carbon Intensity Indicator

Taking the same basic 82,000 dwt Kamsarmax vessel used above:

Average Speed 13.24 knots (basis 50.6pc MCR)
Sailing days 292 days (75pc sailing 25pc at port)
Distance travelled 92,786 nm
Average fuel consumed 32t/day
Fuel Constant 3.151
Sailing days 292 days (75pc sailing 25pc at port)
CII reference line parameters A = 4,977
C = 0.626
2023 CII reduction factor 5pc

 

Required CII:  [CII reference line parameters A * {DWT^(minus CII reference line Parameter C)}]*[1-(CII reduction factor/100)]
 ((4977*(82000^(-0.626))*(1-(5/100))) = 3.97 grams/ton-mile
CO2 emitted per annum:  Fuel consumed * 1,000,000 (convert tons to grams) * Fuel constant
 9344*1000000*3.151 = 29,443e^6 grams
Ton-mile:  DWT*Distance sailed
 82000*92786 = 5,595e^6
Attained CII:  CO2 emitted per annum / ton-mile
 29443e^6/5595e^6 = 3.87 grams/ton-mile
Annual rating:  Attained CII / Required CII compared to DD vector
 3.87/3.97 = 0.97 (C rating)

 

A basic Kamsarmax with an annual rating of 0.97 is between DD vectors d2 (0.94) and d3 (1.06), and so receives a C rating. The annual rating would be an A for a bulk carrier, if it was at or lower than 0.86 (d1), and B if it was above superior boundary (0.86), but equal to or below the lower boundary (0.94). Vessels that receive A, B, or C ratings, will be issued a statement of compliance. Vessels that receive a D for three consecutive years, or an E rating, will be given a year to develop a corrective action plan that will enable the vessel to achieve at least a C rating. The Statement of Compliance to these vessels will not be issued unless the corrective action plan is reflected in a Ship Energy Efficiency Management Plan (SEEMP) and is verified by the administration or authorised organisations (vessel classification societies).

What are the various ways to implement SEEMP and make a vessel EEXI and CII compliant?

  1. Proper maintenance of the vessel’s hull at dry dock.
  2. Coating the vessel’s hull with good paint to increase hydrodynamic performance.
  3. Improve the vessel’s steering configurations.
  4. Have a more efficient aft-ship, propeller, and rudder arrangements.
  5. Reduce energy consumption in main and auxiliary engines, auxiliary machineries, air conditioning, and other minor energy consumers.
  6. Weather routing and choosing the best route for transportation of cargo.
  7. Using efficient energy saving devices.
  8. Slow steaming of the vessel.
  9. Using of alternative fuels instead of high-sulphur fuel oil or very low-sulphur fuel oil (VLSFO).

As a note, SEEMP plans cannot be applied across a company or fleet-wide, as these plans are ship specific and have to be implemented according to the vessel type, cargoes carried, ship routes, and other relevant factors.