Skip to content Skip to footer

Who we are

Our website address is: https://shipip.com.

What personal data we collect and why we collect it

Comments

When visitors leave comments on the site we collect the data shown in the comments form, and also the visitor’s IP address and browser user agent string to help spam detection.

An anonymized string created from your email address (also called a hash) may be provided to the Gravatar service to see if you are using it. The Gravatar service privacy policy is available here: https://automattic.com/privacy/. After approval of your comment, your profile picture is visible to the public in the context of your comment.

Media

If you upload images to the website, you should avoid uploading images with embedded location data (EXIF GPS) included. Visitors to the website can download and extract any location data from images on the website.

Contact forms

Cookies

If you leave a comment on our site you may opt-in to saving your name, email address and website in cookies. These are for your convenience so that you do not have to fill in your details again when you leave another comment. These cookies will last for one year.

If you visit our login page, we will set a temporary cookie to determine if your browser accepts cookies. This cookie contains no personal data and is discarded when you close your browser.

When you log in, we will also set up several cookies to save your login information and your screen display choices. Login cookies last for two days, and screen options cookies last for a year. If you select "Remember Me", your login will persist for two weeks. If you log out of your account, the login cookies will be removed.

If you edit or publish an article, an additional cookie will be saved in your browser. This cookie includes no personal data and simply indicates the post ID of the article you just edited. It expires after 1 day.

Embedded content from other websites

Articles on this site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.

These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.

Analytics

Who we share your data with

How long we retain your data

If you leave a comment, the comment and its metadata are retained indefinitely. This is so we can recognize and approve any follow-up comments automatically instead of holding them in a moderation queue.

For users that register on our website (if any), we also store the personal information they provide in their user profile. All users can see, edit, or delete their personal information at any time (except they cannot change their username). Website administrators can also see and edit that information.

What rights you have over your data

If you have an account on this site, or have left comments, you can request to receive an exported file of the personal data we hold about you, including any data you have provided to us. You can also request that we erase any personal data we hold about you. This does not include any data we are obliged to keep for administrative, legal, or security purposes.

Where we send your data

Visitor comments may be checked through an automated spam detection service.

Your contact information

Additional information

How we protect your data

What data breach procedures we have in place

What third parties we receive data from

What automated decision making and/or profiling we do with user data

Industry regulatory disclosure requirements

Floating Plastic Litter Detected, Categorized Using AI

Plastic waste is a major part of the global pollution crisis, affecting marine organisms and ecosystems and, in turn, posing a threat to human health. To support efforts to mitigate the issue it is vital that marine plastic can be monitored effectively, however this is challenging given the scale, complexity and time required to do so manually.

As such, a team of scientists from Plymouth Marine Laboratory have ‘trained’ an Artificial Intelligence (AI) model to recognize and classify the different types of marine plastic captured in images shot by a video camera mounted on the side of a boat.

Funded by the PML internal research program and the European Space Agency (ESA), the innovative study – titled “Detection and Classification of Floating Plastic Litter Using a Vessel-Mounted Video Camera and Deep Learning” – was carried out as part of an undergraduate placement project, with the results now published in the journal Remote Sensing.

The AI model itself was trained using the MAGEO supercomputer (Massive GPU Cluster for Earth Observation) which is based at PML and operated by the Natural Environment Research Council Earth Observation Data Acquisition and Analysis Service (NEODAAS).

The model was able to classify the presence or absence of plastic in an image with an accuracy of 95% and capable of differentiating different types of plastic – for example a plastic bag or bottle – with an accuracy of 68%.

It is now envisaged that the technique could be more widely applied using crewed or autonomous vessels, such as PML’s proposed long-range autonomous research vessel, the Oceanus, thereby revolutionising existing capabilities to monitor floating plastic litter.

“In situ harmonized and simplified observations of floating marine plastic debris are currently very limited in the literature,” said
Dr Victor Martinez Vicente, Senior Scientist at PML. “We have aimed to tackle the scarcity of these observations through our research on low-cost automated observations. We hope that this initial step will lead to an increase of in situ observations everywhere, but especially in poorer countries where marine litter is usually a great problem.”

With the increase of these observations, we expect to support the validation of algorithms from current sensors and the development of future satellite missions. Properly validated satellite algorithms will allow us to use remote sensing techniques to monitor the progress towards Sustainable Development Goals (in particular index SDG 14.1.1.b) at global scale.”

Source:https://www.marinetechnologynews.com/news/floating-plastic-litter-detected-621239