Skip to content Skip to footer

Who we are

Our website address is: https://shipip.com.

What personal data we collect and why we collect it

Comments

When visitors leave comments on the site we collect the data shown in the comments form, and also the visitor’s IP address and browser user agent string to help spam detection.

An anonymized string created from your email address (also called a hash) may be provided to the Gravatar service to see if you are using it. The Gravatar service privacy policy is available here: https://automattic.com/privacy/. After approval of your comment, your profile picture is visible to the public in the context of your comment.

Media

If you upload images to the website, you should avoid uploading images with embedded location data (EXIF GPS) included. Visitors to the website can download and extract any location data from images on the website.

Contact forms

Cookies

If you leave a comment on our site you may opt-in to saving your name, email address and website in cookies. These are for your convenience so that you do not have to fill in your details again when you leave another comment. These cookies will last for one year.

If you visit our login page, we will set a temporary cookie to determine if your browser accepts cookies. This cookie contains no personal data and is discarded when you close your browser.

When you log in, we will also set up several cookies to save your login information and your screen display choices. Login cookies last for two days, and screen options cookies last for a year. If you select "Remember Me", your login will persist for two weeks. If you log out of your account, the login cookies will be removed.

If you edit or publish an article, an additional cookie will be saved in your browser. This cookie includes no personal data and simply indicates the post ID of the article you just edited. It expires after 1 day.

Embedded content from other websites

Articles on this site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.

These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.

Analytics

Who we share your data with

How long we retain your data

If you leave a comment, the comment and its metadata are retained indefinitely. This is so we can recognize and approve any follow-up comments automatically instead of holding them in a moderation queue.

For users that register on our website (if any), we also store the personal information they provide in their user profile. All users can see, edit, or delete their personal information at any time (except they cannot change their username). Website administrators can also see and edit that information.

What rights you have over your data

If you have an account on this site, or have left comments, you can request to receive an exported file of the personal data we hold about you, including any data you have provided to us. You can also request that we erase any personal data we hold about you. This does not include any data we are obliged to keep for administrative, legal, or security purposes.

Where we send your data

Visitor comments may be checked through an automated spam detection service.

Your contact information

Additional information

How we protect your data

What data breach procedures we have in place

What third parties we receive data from

What automated decision making and/or profiling we do with user data

Industry regulatory disclosure requirements

LUMI and AI Firm Collaborate on Maritime Safety

Aug. 22, 2022 — Navigation is prone to human errors. In addition to their own eyes, captains often have only location-based technologies, maps and perhaps a radar at their disposal. Common reasons for collisions at sea are bad decision making, poor lookout, inefficient use of radar, inexperience, lack of communication, and fatigue, lists Antti Lehmussola, Team Lead for Machine Learning at Groke Technologies in the webinar High Performance Computing for SMEs organized by the EuroCC project earlier this year.

Data from Multiple Sources

Groke Technologies focuses on developing intelligent methods for autonomous navigation to improve safety at sea. High-performance computing plays a vital role in optimizing machine-learning models for computer vision.

The ultimate goal of Groke Technologies is to get rid of human errors at sea and automate navigation through a multi-sensor system that is coupled with deep neural networks and a graphical user interface. The technical solution will combine radar technology, automatic identification system (AIS), visual and thermal cameras, as well as sea charts, inertial measurement units (IMU) and dual band GNSS.

All these sensors and data sources will be installed in a vessel together with several computing units to process the data. There is still work ahead before all of this is in production but in the meantime, many improvements in navigation can be achieved through different awareness systems for captains and vessel operators.

Groke Technologies’ navigation solution is currently in the product development phase. At the moment, AI and machine learning technology is mostly used to process images from a highly specialized camera system that consists of a 225-degree visual camera and a 180-degree thermal camera. By detecting and identifying objects around a vessel from the side of another vessel to a far-away sea buoy it helps to improve the captains’ situational awareness and perception of their vessels’ surroundings. In the future, other sensors’ information will be handled through machine learning too, explains Lehmussola. All this can eventually enable fully automated vessels.

Training Machine-Learning Models with Supercomputing

High-performance computing is an important asset in developing products and services. HPC enables companies to perform massive calculations within a short period of time and allows them to replace time-consuming physical prototyping with simulations. As a result, companies can accelerate the product development process, cut research and development cost and create new innovations.

With the financial support from Business Finland´s AI Business program and computing resources provided by CSC – IT Center for Science, Groke Technologies is now training their machine learning model and investigating how to build deep neural networks for object detection with the optimal trade-off between accuracy and performance. This not an easy task because there are hundreds of different machine learning architectures available for object detection alone but with the HPC experts’ support they are making good progress.

Digitization of Navigation

Due to the strategic investment from Mitsubishi Corporation, Groke technologies’ solution will be initially tailored to meet the needs of the Japanese seafaring where it is expected to alleviate the inevitable shortage of sea captains. Japanese vessels are not allowed to sail under Japanese flag unless the captains´ nationality is Japanese, and many of the local captains are already in the later stages of their careers. The data-driven high-technology navigation solution is expected to draw younger generations into the maritime industry.

LUMI Supercomputer for Industrial Use

LUMI is Europe’s flagship supercomputer. It plays an important role in the endeavor of the European High Performance Computing Joint Undertaking (EuroHPC JU) to develop a world-class supercomputing ecosystem in Europe.

The versatile architecture of LUMI makes it also one of the world’s leading platforms for artificial intelligence. Up to 20% of LUMI´s massive computing capacity is reserved for industrial use which offers new exciting opportunities for data-driven business development.

With the ever-increasing computational performance, we can accelerate our machine-learning research and development efforts, and find the most optimal models for our use cases, says Lehmussola.

Have a look at the webinar High Performance Computing for SMEs organized by the EuroCC project:

Source: Anu Märkälä, CSC – IT Center for Science, Finland

 

CREWEXPRESS STCW REST HOURS SOFTWARE - Paris and Tokyo MoU have announced that they will jointly launch a new Concentrated Inspection Campaign (CIC) on Standards of Training, Certification and Watchkeeping for Seafarers (STCW) from 1st September 2022 to 30th November 2022