Skip to content Skip to footer

Who we are

Our website address is: https://shipip.com.

What personal data we collect and why we collect it

Comments

When visitors leave comments on the site we collect the data shown in the comments form, and also the visitor’s IP address and browser user agent string to help spam detection.

An anonymized string created from your email address (also called a hash) may be provided to the Gravatar service to see if you are using it. The Gravatar service privacy policy is available here: https://automattic.com/privacy/. After approval of your comment, your profile picture is visible to the public in the context of your comment.

Media

If you upload images to the website, you should avoid uploading images with embedded location data (EXIF GPS) included. Visitors to the website can download and extract any location data from images on the website.

Contact forms

Cookies

If you leave a comment on our site you may opt-in to saving your name, email address and website in cookies. These are for your convenience so that you do not have to fill in your details again when you leave another comment. These cookies will last for one year.

If you visit our login page, we will set a temporary cookie to determine if your browser accepts cookies. This cookie contains no personal data and is discarded when you close your browser.

When you log in, we will also set up several cookies to save your login information and your screen display choices. Login cookies last for two days, and screen options cookies last for a year. If you select "Remember Me", your login will persist for two weeks. If you log out of your account, the login cookies will be removed.

If you edit or publish an article, an additional cookie will be saved in your browser. This cookie includes no personal data and simply indicates the post ID of the article you just edited. It expires after 1 day.

Embedded content from other websites

Articles on this site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.

These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.

Analytics

Who we share your data with

How long we retain your data

If you leave a comment, the comment and its metadata are retained indefinitely. This is so we can recognize and approve any follow-up comments automatically instead of holding them in a moderation queue.

For users that register on our website (if any), we also store the personal information they provide in their user profile. All users can see, edit, or delete their personal information at any time (except they cannot change their username). Website administrators can also see and edit that information.

What rights you have over your data

If you have an account on this site, or have left comments, you can request to receive an exported file of the personal data we hold about you, including any data you have provided to us. You can also request that we erase any personal data we hold about you. This does not include any data we are obliged to keep for administrative, legal, or security purposes.

Where we send your data

Visitor comments may be checked through an automated spam detection service.

Your contact information

Additional information

How we protect your data

What data breach procedures we have in place

What third parties we receive data from

What automated decision making and/or profiling we do with user data

Industry regulatory disclosure requirements

Study: Decompression Sickness May be Caused by Faulty Immune Response

dca
Public domain / Pixabay

PUBLISHED SEP 18, 2021 3:14 AM BY GEMINI NEWS

 

[By Anne Sliper Midling]

It is infinitely beautiful below the ocean’s surface. So beautiful that every year some divers are tempted to go a little too deep and stay there a little too long.

Decompression sickness (DCS) has been a known condition for more than a century. The disease – sometimes referred to as the bends – occurs when a diver returns to the surface too fast.

Gas bubbles form in the blood and tissues due to decreasing water pressure in the ascent. Some divers become paralyzed for life. Others get skin rashes or a little pain in their joints. The condition can be fatal.

No medical test is available that can reveal whether you have the disease or not. Until now. The discovery is the first step in developing a blood test that can make it easier to check if someone has DCS.

A hazard for adventurous recreational divers

To date, diagnosis and treatment are based only on symptoms. No one really knows when the treatment is good enough.

“Decompression sickness often occurs in adventurous recreational divers,” says Ingrid Eftedal, a senior scientist at NTNU’s Department of Circulation and Medical Imaging. She is one of Norway’s few experts on what happens to the human body under water.

Until now, researchers haven’t managed to describe in detail the biological changes that occur in DCS. Now Eftedal and a team from Malta have made a major breakthrough.

“DCS is simply the immune system going crazy and causing an inflammatory condition in the body,” says Eftedal.

Decompression sickness occurs when you come up too fast from a dive. Gas bubbles form in the blood and tissues due to the reduced pressure. The white dots in the image are gas bubbles in the heart. Photo: Andreas Møllerløkken / NTNU

The team’s findings have been published in Frontiers in Physiology, and their study is the first to describe all the changes in genetic activity in the blood of divers with the condition.

A major finding was that the white blood cell activity of the innate immune system became strongly activated. These blood cells are the first line of defence in the body’s immune system, and their activation causes inflammation in divers who are afflicted. The finding could make it possible to develop a blood test that can diagnose the disease.

“Then we’ll be able to catch people who have a mild variant of DCS, and we’ll also be able to check when they’ve completed treatment,” says Eftedal.

Today, only a few Norwegian hospitals have solid DCS expertise. If you become ill in Trondheim, for example, you would need to be flown to Bergen to receive treatment in a pressure chamber where you breathe oxygen at high pressure.

A blood test would make it easier to make a definite diagnosis early.

Following the divers

Over the years, scuba divers have learned to reduce the risk of DCS with controlled ascents from the depths.

Very few people are diagnosed with DCS in Norway. Approximately five people each year in Central Norway receive treatment in a pressure chamber. The unreported numbers are probably much larger.

The low number means has made it difficult to study the condition. It is almost impossible to know where and when a patient is admitted with the condition, and thus equally impossible to obtain a large enough number of samples taken at the same time.

The solution lay in Malta. High numbers of recreational divers come there every year to explore the beautiful wrecks from the country’s long history of European and Arab conquests. The same thing happens every year: 50 to 100 divers go a little too deep, and stay there a little too long.

Doctors in Malta have a lot of experience with DCS and were very interested in collaborating with Eftedal and the research team at the University of Malta.

Together, the team took blood samples from divers who had been diagnosed with DCS and divers who had completed a dive without developing the condition.

The researchers took the blood samples at two different times: within eight hours after the divers came out of the water and 48 hours afterwards, when the divers with DCS had undergone treatment in a pressure chamber. They performed RNA sequencing analysis to measure changes in the gene expression in white blood cells.

The study showed that DCS activates some of the most primitive body defence mechanisms carried out by certain white blood cells.

“In the case of decompression sickness, something happens that’s reminiscent of autoimmune diseases such as arthritis. The immune system misunderstands. It’s conceivable that future treatment could also involve immunoregulatory drugs,” says Eftedal.

An earlier survey by Eftedal of healthy, experienced divers who regularly do recreational diving likewise showed changes in the activity of white blood cells during diving, even when the divers did not feel any discomfort or show symptoms of DCS.

This article appears courtesy of Gemini News and may be found in its original form here

SOURCE READ THE FULL ARTICLE

https://www.maritime-executive.com/editorials/study-decompression-sickness-may-be-caused-by-faulty-immune-response