Skip to content Skip to footer

Who we are

Our website address is: https://shipip.com.

What personal data we collect and why we collect it

Comments

When visitors leave comments on the site we collect the data shown in the comments form, and also the visitor’s IP address and browser user agent string to help spam detection.

An anonymized string created from your email address (also called a hash) may be provided to the Gravatar service to see if you are using it. The Gravatar service privacy policy is available here: https://automattic.com/privacy/. After approval of your comment, your profile picture is visible to the public in the context of your comment.

Media

If you upload images to the website, you should avoid uploading images with embedded location data (EXIF GPS) included. Visitors to the website can download and extract any location data from images on the website.

Contact forms

Cookies

If you leave a comment on our site you may opt-in to saving your name, email address and website in cookies. These are for your convenience so that you do not have to fill in your details again when you leave another comment. These cookies will last for one year.

If you visit our login page, we will set a temporary cookie to determine if your browser accepts cookies. This cookie contains no personal data and is discarded when you close your browser.

When you log in, we will also set up several cookies to save your login information and your screen display choices. Login cookies last for two days, and screen options cookies last for a year. If you select "Remember Me", your login will persist for two weeks. If you log out of your account, the login cookies will be removed.

If you edit or publish an article, an additional cookie will be saved in your browser. This cookie includes no personal data and simply indicates the post ID of the article you just edited. It expires after 1 day.

Embedded content from other websites

Articles on this site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.

These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.

Analytics

Who we share your data with

How long we retain your data

If you leave a comment, the comment and its metadata are retained indefinitely. This is so we can recognize and approve any follow-up comments automatically instead of holding them in a moderation queue.

For users that register on our website (if any), we also store the personal information they provide in their user profile. All users can see, edit, or delete their personal information at any time (except they cannot change their username). Website administrators can also see and edit that information.

What rights you have over your data

If you have an account on this site, or have left comments, you can request to receive an exported file of the personal data we hold about you, including any data you have provided to us. You can also request that we erase any personal data we hold about you. This does not include any data we are obliged to keep for administrative, legal, or security purposes.

Where we send your data

Visitor comments may be checked through an automated spam detection service.

Your contact information

Additional information

How we protect your data

What data breach procedures we have in place

What third parties we receive data from

What automated decision making and/or profiling we do with user data

Industry regulatory disclosure requirements

Hyundai’s autonomous ship is the first to make a transoceanic journey

A major argument for autonomous vehicles is that they’ll make roads safer by removing human error — by far the dominant cause of traffic accidents — from the equation.

By making ships autonomous, the maritime industry thinks it could make the seas safer, too, while also making shipping cleaner and more efficient. Now, a transoceanic trip powered by AI has brought it one step closer to realizing that vision of the future.

Navigating rough waters

Maritime transport is hugely important to the global economy — more than 80% of international trade (by volume) happens via sea, mainly because it’s more economical than moving goods great distances by land or air.

There are more than 62,000 vessels in the world’s trading fleets, and getting all those ships where they need to be, when they need to be there is a complex undertaking — navigators need to take into account weather conditions, the locations of other ships, port activity, and more when deciding which routes to take and at what speed.

If something disrupts this system, the impact can be huge — when the massive container ship Ever Given got stuck in the Suez Canal for six days in March 2021, it caused months of supply chain issues and cost the maritime industry an estimated $10 billion per day.

Even more devastating than the economic impact, though, is the fact that a person died during the process of freeing the ship.

While incidents that major aren’t common, groundings and collisions between ships or ships and stationary objects, such as oil rigs and bridges, occur regularly — Japan, for example, averages 286 ship collisions annually.

In addition to costing money and, in some cases, human lives, these accidents can also damage the environment — 62% of the oil spills that occurred between 1970 and 2021 were caused by tanker collisions or groundings.

Autonomous ships

As was the case with the Ever Given, the majority of accidents at sea are ultimately blamed on human error, so the maritime industry is now developing ships that can operate with greater levels of autonomy.

These vessels are called “Maritime Autonomous Surface Ships” (MASS), and in June 2019, the International Maritime Organization (IMO) — the UN agency that regulates shipping — approved guidelines for MASS trials.

Three months later, Japanese shipping company NYK Line conducted the world’s first MASS trial following those guidelines, letting an autonomous navigation system control a massive ship during a two-day journey from China to Japan.

“[The system] collected information on environmental conditions around the ship from existing navigational devices, calculated collision risk, automatically determined optimal routes and speeds that were safe and economical, and then automatically navigated the ship,” wrote NYK Line.

Several other MASS trials have taken place since then, and Avikus — a subsidiary of Hyundai Heavy Industries, the world’s largest shipbuilding company — has now conducted the first in which a large ship used an autonomous navigation system on a transoceanic journey.

That ship, the Prism Courage, left a port in the Gulf of Mexico on May 1st, sailed through the Panama Canal, and then arrived at a port in South Korea 33 days later.

The AI’s route choices increased fuel efficiency by 7% and reduced carbon emissions by 5%.

For about half the journey, the ship was controlled by an autonomous navigation system called HiNAS 2.0 — the AI assessed the weather, waves, and the rest of the vessel’s surroundings to determine the ideal route in real-time and then command the ship’s steering systems to follow it.

HiNAS 2.0’s ability to recognize other ships in the Prism Courage’s vicinity during the trip allowed it to avoid collision more than 100 times, according to Avikus. The AI’s route choices also increased fuel efficiency by about 7% and reduced carbon emissions by about 5%

Both the American Bureau of Shipping (ABS) and the Korea Register of Shipping (KR) monitored the Prism Courage’s journey in real-time.

“Avikus’ autonomous navigation technology was greatly helpful in this ocean-crossing test especially for maintaining navigating routes, autonomously changing directions, and avoiding nearby ships,” said Young-hoon Koh, the Prism Courage’s captain.

The bottom line

The IMO rates a MASS’s level of autonomy on a scale, starting with Level 0 (no autonomy) and ending with Level 4 (full autonomy). HiNAS 2.0 is a Level 2 system — that’s equivalent to a self-driving car that still needs a backup driver behind the wheel.

As is the case with autonomous cars, the speed at which the maritime industry authorizes fully autonomous ships (if it does) will depend in large part on how quickly regulators adapt to the tech. The fact that shipping is an international affair complicates that process, since the regulations could change between ports.

Some think it’s more likely that ships will always have someone on board, as that would be easier to get approved than a crewless ship, while still allowing shippers to reap most of the benefits of autonomous navigation tech.

“We may not remove the person from the ship, but we will remove them from the bridge and have them do more high-value work and call the person in when they are needed,” Hendrik Busshoff, product manager for autonomy at maritime tech firm Wärtsilä Voyage, told Wired in 2020.

Avikus hopes to play a major role in getting autonomous navigation systems into ships at sea — it expects the ABS to certify HiNAS 2.0 based on the Prism Courage’s journey and plans to begin commercializing the tech before the end of 2022.