Skip to content Skip to footer

Who we are

Our website address is: https://shipip.com.

What personal data we collect and why we collect it

Comments

When visitors leave comments on the site we collect the data shown in the comments form, and also the visitor’s IP address and browser user agent string to help spam detection.

An anonymized string created from your email address (also called a hash) may be provided to the Gravatar service to see if you are using it. The Gravatar service privacy policy is available here: https://automattic.com/privacy/. After approval of your comment, your profile picture is visible to the public in the context of your comment.

Media

If you upload images to the website, you should avoid uploading images with embedded location data (EXIF GPS) included. Visitors to the website can download and extract any location data from images on the website.

Contact forms

Cookies

If you leave a comment on our site you may opt-in to saving your name, email address and website in cookies. These are for your convenience so that you do not have to fill in your details again when you leave another comment. These cookies will last for one year.

If you visit our login page, we will set a temporary cookie to determine if your browser accepts cookies. This cookie contains no personal data and is discarded when you close your browser.

When you log in, we will also set up several cookies to save your login information and your screen display choices. Login cookies last for two days, and screen options cookies last for a year. If you select "Remember Me", your login will persist for two weeks. If you log out of your account, the login cookies will be removed.

If you edit or publish an article, an additional cookie will be saved in your browser. This cookie includes no personal data and simply indicates the post ID of the article you just edited. It expires after 1 day.

Embedded content from other websites

Articles on this site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.

These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.

Analytics

Who we share your data with

How long we retain your data

If you leave a comment, the comment and its metadata are retained indefinitely. This is so we can recognize and approve any follow-up comments automatically instead of holding them in a moderation queue.

For users that register on our website (if any), we also store the personal information they provide in their user profile. All users can see, edit, or delete their personal information at any time (except they cannot change their username). Website administrators can also see and edit that information.

What rights you have over your data

If you have an account on this site, or have left comments, you can request to receive an exported file of the personal data we hold about you, including any data you have provided to us. You can also request that we erase any personal data we hold about you. This does not include any data we are obliged to keep for administrative, legal, or security purposes.

Where we send your data

Visitor comments may be checked through an automated spam detection service.

Your contact information

Additional information

How we protect your data

What data breach procedures we have in place

What third parties we receive data from

What automated decision making and/or profiling we do with user data

Industry regulatory disclosure requirements

Scenario 1: “Shadow IT” makes OT available on the Internet

An equipment room containing PLCs and control gear for critical systems was located some distance from the main engine control room but required frequent adjustments via a local HMI.

To avoid leaving the control room, a PC was installed in the equipment room. Teamviewer was used to enable remote access from the control room.

The remote PC bridged between the corporate network and the OT network. The Teamviewer password was on a label above a monitor in the control room, allowing access to the remote PC from the wider Internet.

A vulnerability discovered in the network switches of the OT equipment allowed a shared password to be recovered. With this, it was possible to wipe the configuration of PLCs and switches, stopping all OT systems from functioning.

Scenario 2: Third-party mistakenly allows access to critical serial networks

The load computer was located on the bridge of the vessel. This required network connectivity between two PCs, and to several remote Serial->IP convertors used to read information from ballast tanks.

The third-party vendor used the available network sockets on the bridge to interface to these. The network design of the vessel meant that any unrecognised or unregistered devices were placed in an isolated VLAN.

This allowed the PCs to interact with the Serial->IP convertors. However, network sockets in the passenger space used the same mechanism.

A laptop connected to a network port in the passenger space could therefore inject traffic onto the serial network used for ballast tank readings. Random data injected here prevented the bridge systems reading ballast tank levels, causing multiple alarms and the requirement to take manual dippings until the problem was resolved.

Scenario 3: Remote firmware update causes operational issues

The NOx scrubber system was installed by a third party and contained significant control gear and remote monitoring.

The ship owner provided a dedicated VLAN for the system to communicate over VSAT. It was found that the HMI providing remote connectivity was also attempting to download a firmware and configuration from a remote server using unsecured HTTP.

It was possible to update the firmware of the HMI to a malicious one, and remotely interact with the control gear of the scrubber. The configuration of the PLCs in the scrubber was wiped, preventing control and monitoring of the scrubber. The engines needed to be operated at reduced power to avoid damage to the scrubber system.

Scenario 4: Accessible HMI leaks high-value passwords

An HMI in a HVAC room on the vessel had access to a limited number of screens, only concerning control of the HVAC equipment and monitoring of power systems on the vessel.

By using the “Print” menu, it was possible to break out of the HMI software and access the underlying operating system.

All HMIs used a shared Windows network, including SMB shares. One of the HMIs in the main control room had a file called “passwords.txt” left on this share.

This contained operator and administrator passwords for all the HMIs and PLCs, left from when the vessel was commissioned. These passwords were found to be common across all vessels using that ICMS (Integrated Control and Monitoring System) vendor.

Conclusion

Getting the basics dealt with is a good start. Issues with passwords, patches and people are widespread on vessels. Checklists work when dealing with these basics.

A checklist is not the way to address all security issues; to borrow a phrase from aviation – tyres need to be kicked and fires need to be lit. Hard evidence is needed that policies are actually adhered to when at sea.

Finally, vessel security needs to be tested thoroughly, as cyber criminals don’t use checklists.

 

SHIP IP LTD – Remote internal/external Vulnerability &

Penetration Testing

TRUST OUR NETWORK – WE GUARANTEE BEST PRICES!

READ MORE

Maritime Vulnerability and Penetration Testing

 

Source: pentestpartners