BIMCO And ICS Publish New Cyber Security Guide For Crew On Board.

The digitalisation of maritime operations and the reliance on technology and network connectivity for daily onboard and on shore operations means that shipping is vulnerable to the threat of cyber incidents.

To help crew prepare, both on the bridge and in the engine room, the new “Cyber Security Workbook for On Board Ship Use” includes several checklists of how to protect, detect, respond and recover from a cyber incident, and thereby offers a practical and easy to use guide for the master and the officers.

BIMCO is continuously raising awareness to shipowners on issues such as the cyber threat and helps lead the work by issuing industry guidelines to assist companies in formulating their own approaches to cyber risk management onboard. Based on contributions by BIMCO, IMO recently decided to identify cyber risks as specific threats, which companies should try to address to the same extend as any other risk that may affect the safe operation of a ship and protection of the environment. Guidance on these issues can be found in the Guidelines on Cyber Security Onboard Ships.

To protect multimillion-dollar floating assets, cyber risk should be managed as any other risk that may affect the safe operation of a ship and jeopardize the protection of the environment. The new workbook gives an easy introduction to incorporating cyber security into the ship’s management system.

“Cyber security risk management is not just an IT issue. Managing the complex interactions between technology and humans correctly will be key to avoid a cyber incident, and to recover from them, should an incident happen,” says Aron Frank Sørensen, Head of Maritime Technology and Regulation at BIMCO.

“I see the workbook as a valuable tool that will help officers manage cyber risks while carrying out their daily routines on board,” Sørensen says.
Source: BIMCO

 



Maritime blockchain solutions have the potential to greatly improve efficiencies in shipping and bring this industry into the 21st century


Shipping is the engine of the global economy, making up some 90% of world trade. That’s not easy to express in monetary terms, although experts estimate it at over $10 trillion a year. Maritime blockchain could transform this industry and bring multiple benefits to importers, exporters, transporters, ship owners, and even governments.

Blockchain at sea: How technology is transforming the maritime industry !

Blockchain technology has the potential to revolutionise the maritime industry and bring it into the 21st century. This complex ecosystem could greatly benefit from a robust digital platform to exchange data in real time.  

In fact, the industry has been testing maritime blockchain applications since 2017. Some of the most important shipping companies, such as Maersk, Hyundai Merchant Marine, and Maritime Silk Road Platform, have teamed up with tech giants to create blockchain shipping systems to streamline maritime logistics.

Maritime blockchain speeds up document flows

One of the main benefits of introducing blockchain to the maritime industry is cutting down bureaucracy. For international shipments, companies and customs officials are forced to fill out over 20 different types of documents (most of them paper-based) to move goods from exporter to importer.

Most of these documents fail to provide real-time visibility and data quality, which often causes setbacks in financial settlements. These types of delays and inefficiencies are hard to accept in a data-driven, digital world.

An international consortium of shipping companies and European customs has tested a blockchain solution that eliminates printed shipping documents from the process. Not only did blockchain speed up operations, but this pilot proved how organisations in the maritime industry can save hundreds of millions of dollars annually.

Blockchain not only makes cargo checks faster, it also minimises the risk of penalties for customs compliance that are levied on customers.

The maritime industry can also benefit from predictive analytics

Big data is having a huge impact on the industry, thanks to its potential to optimise operations, improve cybersecurity, and increase the overall efficiency of the supply chain.  

However, data alone can’t change the way the maritime industry works. Companies, ports, and governments need to analyse the information to reap real benefits from the findings. This industry generates about 100-120 million data points every day. It was impossible for existing technologies to gather and analyse this amount of data efficiently.

Blockchain can help by placing the crucial data in one place and creating a unique platform for solution providers, ports, and agents that operate along the supply chain.

By tracking cargo in real time using blockchain technology, shipping companies and ports can plan land procedures ahead of time, speeding up terminal works and cutting down costs. They can also use data to make educated predictions that enhance their operations and increase efficiency.

Maritime blockchain increases trading safety and transparency

The maritime industry includes multiple parties. Most of these communicate through lengthy paper chains, making it impossible to track shipments currently. This, combined with high transaction volumes, leads to little or no transparency in most processes.

Blockchains can secure the integrity of any record, reducing the risk of damaged or missing shipments. By replacing the old paper system, all parties involved have access to information, making it easier to plan operations efficiently and save on costs.

The information stored in the blockchains is impossible to delete or edit without leaving traces, so this transparency also increases security.

It reduces data entry errors and can improve fraud detection. Maersk’s collaboration with IBM, for example, also stipulates the development of means to streamline customs and security inspections, as well as tracking shipping containers for commercial purposes.

Maritime blockchain and cost efficiency

The blockchain-based Bill of Lading created by Maersk and IBM showed in early tests that administrative costs could be reduced by as much as 15% of the value of shipped goods, thanks to tracking shipping containers and eliminating paper documents.

It may seem like a small percentage, but that could create savings of $1.5 trillion globally.

Besides costs related to documentation, companies can also significantly reduce expenses caused by data entry errors, procedural delays, and discrepancies.

Blockchain technology is transforming the maritime industry

The maritime industry is still struggling with high costs and a high level of pollution. Blockchain technology can help with both issues, by cutting down administrative costs and providing environment-friendly solutions. All while protecting the industry against cybercrime and piracy, and ensuring a fairer deal for all parties involved.

SOURCE READ FULL ARTICLE


BIMCO : The Guidelines on Cyber Security Onboard Ships

Cyber threats are constantly evolving which requires a regular review of all cyber related processes on board ships to allow for successful protection against cyber attacks. We are pleased to announce that today various maritime industry organisations published a revised third version of the “Guidelines on Cyber Security onboard Ships”. The document provides guidance to shipowners and operators on how to assess their operations and develop procedures to strengthen cyber resilience on board their ships. The Guidelines will continue to be updated regularly to mirror the evolution of cyber security threats and to outline new measures to mitigate against dynamic cyber risks.

Key updates in Version 3.0 include:

  • the requirement to incorporate cyber risks in the ship’s safety management system (SMS);
  • more detailed information related to the risk assessments of operational technology (OT);
  • increased guidance for dealing with the risks in the ship’s supply chain;
  • cases studies of verified cyber incidents onboard ships to highlight and illustrate potential problems.

Version 3.0 of the Guidelines can be downloaded HERE


BIMCO aims to publish cyber security clause in spring 2019

Overview

BIMCO is developing a clause dealing with cyber security risks and incidents that might affect the ability of one of the parties to perform their contractual obligations.

The clause is being drafted by a small team led by Inga Froysa of Klaveness, Oslo. Other companies involved include Navig8, the UK P&I Club and HFW, and the project is due to be completed in May 2019.

Planning and protecting is key

The BIMCO cyber security clause requires the parties to have plans and procedures in place to protect its computer systems and data, and to be able to respond quickly and efficiently to a cyber incident.

Mitigating the effect of a cyber security breach is of paramount importance and the clause requires the affected party to notify the other party quickly, so that they can take any necessary counter-measures. The clause is also designed for use in a broad range of contracts. This way, the clause can cover arrangements with third-party service providers, such as brokers and agents.

The liability of the parties to each other for claims is limited to an amount agreed during negotiations. A sum of USD 100,000 will apply if no other amount is inserted.

Two important functions

The clause will fulfill two important functions. The first is to raise awareness of cyber risks among owners, charterers and brokers. The second is to provide a mechanism for ensuring that the parties to the contract have procedures and systems in place, in order to help minimize the risk of an incident occurring in the first place and, if it does occur, to mitigate the effects of such an incident.

In the early stages of development, the drafting team discussed if the clause should also address payment fraud. It was concluded that the risk of this increasingly common fraud is probably best dealt with at a procedural level by companies tightening up their internal payment procedures to require verification of any changes to payment details.


cyber threats against ports.

Brigadier General Gholam Reza Jalali, head of Passive Defence Organisation of Iran, has said more attention needs to be paid to cyber threats against commercial ports and shipping, insisting that this is a real area of concern.

Iran Press / Iran news: According to an Iran Press report, in an exclusive interview on Sunday, Brigadier General Jalali said: “Cyber threats which impact our ports and maritime operations are a critical issue which must be discussed, and we must be payed great attention to this issue.”

He added: “Cyber threats can be divided into three categories. The first one is, the probable extension of sanctions to cover the realm of infrastructure and cyberspace. The other one is, penetration and a cyber-attack on our maritime infrastructures. There have been significant joint efforts which have been carried out by the “Passive defence” and “Port and Maritime” Organisations and with decent structures regarding cyber defense and passive defense, we can jointly strengthen our infrastructure against cyber-threats.”

In further remarks, the head of the Passive Defence Organisation of Iran said: “In fact, to deal with this issue, we devised and prepared five guidelines or instructions, which are:

(1) An Emergency Response Project which is currently being  implemented.

(2)  Emergency security of Cyber Infrastructures.

(3) Protection of our computer systems and immunizing against a cyber-attack, which means security in the long term.

(4) Information Retrieval when a cyber-attack does take place.

(5) Cyber Preparedness and simulating a cyber-attack.”

 

SOURCE READ FULL ARTICLE


The International Association of Classification Societies (IACS) has published nine of its 12 recommendations on cyber safety for ships.

IACS initially addressed the subject of software quality with the publication of UR E22 in 2006.  Recognizing the huge increase in the use of onboard cyber-systems since that time, IACS has developed this new series of recommendations with a view to reflecting the resilience requirements of a ship with many more interdependencies. They address the need for:

•     A more complete understanding of the interplay between ship’s systems
•     Protection from events beyond software errors
•     In the event that protection failed, the need for an appropriate response and ultimately recovery.
•     In order that the appropriate response could be put in place, a means of detection is required.

Noting the challenge of bringing traditional technical assurance processes to bear against new and unfamiliar technologies, IACS has launched the recommendations in the expectation that they will rapidly evolve as a result of the experience gained from their practical implementation. So, as an interim solution, they will be subject to amalgamation and consolidation.

More than 90 percent of the world’s cargo carrying tonnage is covered by the classification design, construction and through-life compliance rules and standards set by the 12 member societies of IACS.

The 12 Recommendations are:

Recommended procedures for software maintenance of shipboard equipment and systems (published)

Shipboard equipment and associated integrated systems to which these procedures apply can include:
– Bridge systems;
– Cargo handling and management systems;
– Propulsion and machinery management and power control systems;
– Access control systems;
– Ballast water control system;
– Communication systems; and
– Safety system.

Recommendation concerning manual / local control capabilities for software dependent machinery systems (published)

IMO requires through SOLAS that local control of essential machinery shall be available in case of failure in the remote (and for unattended machinery spaces, also automatic) control systems. For traditional mechanical propulsion machinery, this design principle is well established. The same design requirement applies to computerized propulsion machinery, i.e. complex computer based systems with unclear boundaries and with functions maintained in the different components.

Contingency plan for onboard computer based systems (published)

Computer based systems are vulnerable to a variety of failures such as software malfunction, hardware failure and other cyber incidents. It is not possible for all failure risks to be eliminated so residual risks always remain. In addition, a limited understanding of the operation of complex computer based systems together with fewer opportunities for manual operation can lead to crews being ill-prepared to use their initiative to responding effectively during a failure.

IMO and Classification Society rules contain many context specific examples of requirements for independent or local control in order to provide the crew with the means to operate the vessel in emergencies or following equipment failures. These requirements have generally been introduced when automation or remote control is introduced to individual pieces of equipment or functions and address concerns regarding its possible failure of the new features. The introduction of technologies which integrate different vessel’s functions creates the opportunity for two or more systems to be impacted by a single failure simultaneously.

Where, due to high computer dependence, manual operation is no longer practical or where the number of systems simultaneously affected is too high for manual operation to be practical with existing crew levels then the value of local control as a form of reassurance is limited, however the crew will still need to be provided with practical options to try to manage threats to human safety, safety of the vessel and/or threat to the environment.

If the practical options are not considered during the design and installed during construction of the vessel then the vessel and its crew could be, due to the introduction of new technologies, exposed to risks which they cannot manage.

Practical options could include limiting the extent of potential damage so that manual control is still achievable or providing backup systems which could be used in a worst case systems failure. Whatever form of contingency is provided to address failures it is important that it is well documented, tested and that the crew is aware and trained.

Requirements related to preventive means, independent mitigation means, engineered backups, redundancy, reinstatement etc. are dealt with in the other relevant recommendations.

Network Architecture (published)

Ship control networks have evolved from simple stand-alone systems to integrated systems over the years and the demand for ship to shore remote connectivity for maintenance, remote monitoring is increasing.

Incorporation of Ethernet technology has resulted in a growing similarity between the once disconnected fieldbus and Internet technologies. This has given rise to new terms such as industrial control networking, which encompasses not only the functions and requirements of conventional fieldbus, but also the additional functions and requirements that Ethernet-based systems present.

The objective of the present recommendation is to develop broad guidelines on ship board network architecture. The recommendation broadly covers various aspects from design to installation phases which should be addressed by the Supplier, system integrator and yard.

Data Assurance (published)

Regulation strongly focuses on system hardware and software development, however, data related aspects are poorly covered comparatively. Data available on ships has become very complex and in a large volume, meaning a user is unlikely to spot an error and it would be unreasonable to expect them to do so. Cyber systems depend not only on hardware and software, but also on the data they generate, process, store and transmit. These systems are also becoming more data intensive and data centric, often used as decision support and advisory systems and for remote digital communication.

Data Assurance may be intended as the activity, or set of activities, aimed at enforcing the security of data generated, processed, transferred and stored in the operation of computer based systems on board ships. Security of data includes confidentiality, integrity and availability; the scope of application of Data Assurance covers data whose lifecycle is entirely within on board computer based system, as well as data exchanged with shore systems connected to the on board networks.

Physical Security of onboard computer based systems (to be published Q4, 2018)

Network Security of onboard computer based systems (published)

Network security of onboard computer-based systems consists in taking physical, organizational, procedural and technical measures to make the network infrastructure connecting Information Technology and/or Operational Technology systems resilient to unauthorized access, misuse, malfunction, modification, destruction or improper disclosure, thereby ensuring that such systems perform their intended functions within a secure environment.

Vessel System Design (to be published Q4, 2018)

Inventory List of computer based systems (published)

For effective assessment and control of the cyber systems on board, an inventory of all of the vessel’s equipment and computer based systems should be created during the vessel’s design and construction and updated during the life of the ship: tracking the software and hardware modifications inside ship computer based systems enables to check that new vulnerabilities and dependencies have not occurred or have been treated appropriately to mitigate the risk related to their possible exploitation.

Integration (published)

Integration refers to an organized combination of computer-based systems, which are interconnected in order to allow communication and cooperation between computer subsystems e.g. monitoring, control, Vessel management, etc.

Integration of otherwise independent systems increases the possibility that the systems responsible for safety functions can be subject to cyber events including external cyberattacks and failures caused by unintentionally introduced malware. Systems which are not directly responsible for safety, if not properly separated from essential systems or not properly secured and monitored in an integrated system, can introduce routes for intrusion or cause unintended damage of important systems. It is necessary to have a record and an understanding of the extent of integration of vessels’ systems and for them to be arranged with sufficient redundancy and segregation as part of an overall strategy aimed at preventing the complete loss of ship’s essential functions.

Remote Update / Access (published)

Information and communications technology (ICT) is revolutionizing shipping, bringing with it a new era – the ‘cyber-enabled’ ship. Many ICT systems on-board ships connect to remote services and systems on shore for monitoring of systems, diagnosis and remote maintenance, creating an extra level of complexity and risk. ICT systems have the potential to enhance safety, reliability and business performance, but there are numerous risks that need to be identified, understood and mitigated to make sure that technologies are safely integrated into ship design and operations.

Communication and Interfaces (to be published Q4, 2018)


Digitalisation on the bridge, Digitalisation is throwing up daily challenges to the shipping industry’s established order with faster connectivity and enhanced functionality driving the transparency of information flow across almost every area of the business.

Shipping is embracing this effect – and cautiously welcoming the disrupters too – and speed of adoption is quickening. What is still developing is how to apply this digital thinking to a traditional business-to-business market where the speed of technology adoption needs to fit market cycles.

What the advocates of smart shipping have recognised is that product-oriented organisations cannot adhere to 20th century business models of research-develop-build-sell-repeat and expect to thrive in the longer term.

A sustainable digital business is one that focuses on the customer first and invites a new conversation about their needs and how products and services fit around that. This can be a challenging process for organisations which have happily relied on selling hardware for decades, even if their origins lie in the invention and popularisation of such equipment.

It is doubly true when the area of operation is not purely commercial or concerned with fuel savings or schedule keeping, but the regulated safety space on the bridge. The requirement for type-approved, standards-based systems for navigation safety are a far cry from an app-based efficiency gain or drone-based spare parts delivery.

For a company that has navigation systems in its DNA, it has become a natural extension for us to think about what digitalisation can do for customers; more and more of them are working to improve connectivity on the bridge and from bridge to shore.

The data on demand model is quickly being replaced by real-time monitoring of ship systems and customers are already exploring the benefits of a richer data stream that can enhance safety and efficiency of ship operations.

There are several elements to this strategy, the first will centre around gathering data to analyse system performance and better plan servicing and maintenance of the bridge system.

Digital updates for the electronic chart display are already happening but there is a need to improve the procedure for getting the data into the front of bridge navigation system. Rather than relying on memory sticks for transfer, there should be an independently hosted back of bridge system with a secure connection to the front of bridge.

We will also employ the same secure data stream to deploy software updates and patches directly into the bridge system when the vessel is alongside and on voyage.

 

Finally, we can use the data to improve visibility from shore, such as for a port authority or vessel operations centre and so support mariners on most economic routeing, berth approach or manoeuvring operations.

This will act as an accelerator for autonomous vessel technology, but it needs to be managed in a way that increases safety and efficiency. We think that customers, rather than vendors, should decide how and at what speed the process evolves.

This new era requires that the supplier changes too; building a new skills base with people experienced in connectivity and data, so that the outcome is an improvement and not a further complication to an already complex business.

We are also aware that with greater connectivity and more data transfer comes an increased security risk, which must be managed.

Our approach is to build a cyber infrastructure which is capable of maintaining more than just an ‘air gap’ between the ship’s network and the front of bridge navigation system. This Sperry Marine Secure Maritime Gateway will go into live testing by Q4 2018 and promises to provide a robust component of a layered cyber security strategy.

This approach to digitalisation could be viewed as small steps in the right direction but it is critical that the strategy actually provides tangible results, not innovations in search of a business model. By building a platform that can be used to deliver services as well as systems we will be able to make giant leaps too.

It also reflects the fact that our service engineers are present on the bridge; we see how customers use our products and hear first-hand about the improvements and enhancements they want to see.

That gives us a unique perspective on how to create new services that meet these changing needs. For a company that has long been the go-to for radar, ECDIS, gyrocompass or autopilot – but which would always leave the operations to the shipowner – this is a completely new approach.

History and heritage are not enough to protect anyone from the challenge of digitalisation, but change need not be a threat to survival. Instead, it enables much closer dialogue on how we can support customer operations and deliver real digital value, rather than create disruption for its own sake.

ARTICLE SOURCE : by Jan Thordan Hansen, director, Sperry Marine


OCIMF is pleased to announce the release of the seventh edition of the SIRE Vessel Inspection Questionnaire (VIQ7).

This edition has undergone an extensive revision process which has brought the VIQ up-to-date with respect to changes in legislation and best practices. The SIRE Focus Group, which has led the work on the revision of this document, has examined the questions to determine whether these continue to remain relevant and has reduced the overall set of questions by up to 90 questions.

The section on Structural Condition in the existing VIQ6 (Chapter 7) has been reduced and merged with Chapter 2. A new chapter (Chapter 7) has been developed to cover Maritime Security which has 21 new questions covering Policies and Procedures, Equipment and Cyber Security.

The section on Mooring (Chapter 9) has been significantly reviewed to incorporate the revisions and best practices that will be introduced in the Mooring Equipment Guidelines, Fourth Edition (MEG4). Operators will be encouraged to align their procedures and equipment with the guidance provided in MEG4 as soon as possible.

The existing chapter on Communications (Chapter 10) has been reduced and merged with Chapter 4, which is now a section on Navigation and Communications.

A set of 10 questions on LNG Bunkering has been added to the section on Engine and Safety Compartments (Chapter 10). These questions have been developed in conjunction with advice and guidance from SIGTTO and SGMF.

The following templates within the seventh edition of the SIRE Vessel Inspection Questionnaires (VIQ7) are now available to integrators upon the OCIMF Staging environment and will be released to the Production environment on the 17September 2018.

  • Template 4401 – VIQ7 (Petroleum)
  • Template 4402 – VIQ7 (Chemical)
  • Template 4403 – VIQ7 (LPG)
  • Template 4404 – VIQ7 (LNG)

 


GDPR TMSA Cyber Security

 

Tanker owners should be prepared for new EU and IMO cyber security regulations as they must already comply with maritime security requirements under OCIMF’s TMSA 3, writes Martyn Wingrove

There are increasing amounts of cyber security-related regulations that shipping companies will have to comply with, but tanker owners are already ahead of the game. Ship operators will need to include cyber in ship safety and security management under the ISM Code from 1 January 2021.

Before that, they need to be aware of cyber and data security regulations, including the EU general data protection regulation (GDPR) and the EU directive on the security of networks and information systems (NIS).

Much of the requirements under these forthcoming or new regulations are already within Oil Companies International Marine Forum (OCIMF)’s third edition of the Tanker Management and Self Assessment (TMSA) best practice guidelines. This came into force on 1 January this year, with a new element on maritime security and additional requirements of key performance indicators and risk assessments.

Regulation changes were outlined at Riviera Maritime Media’s European Maritime Cyber Risk Management Summit, which was held in London on 15 June. The event was held in association with Norton Rose Fulbright, whose head of operations and cyber security Steven Hadwin explained that “data protection and cyber security needs to be taken seriously from a legal point of view.”

Data, such as information on cargo and charterers, could “become a considerable liability”. If data is lost “then GDPR could be in play” said Mr Hadwin. Regulators “could impose a fine of up to 4% of that organisation’s global annual turnover.”

PwC UK cyber security director Niko Kalfigkopoulos explained the legislation and reasoning behind the NIS Directive, which went into full effect in May this year.  “These regulations have teeth” he said because of the potential size of fines and damage to a company’s reputation from being a victim of a cyber attack. This is one of the reasons why boardroom executives should be aware and understand what is required for compliance.

Class support

During the summit, class societies provided cyber security guidance as they collectively attempted to define cyber secure ship notations. Lloyd’s Register cyber security product manager Elisa Cassi said shipping companies should have a third party monitor their IT network and the operational technology (OT) and employ staff to “stop people sharing data or compromising procedures”.

Tanker owners “need to identify any compromise before an attacker tries to penetrate”, Ms Cassi explained, noting that shipping companies need to “investigate the vulnerabilities through analytics and machine learning”, understand the behaviour of potential threats and use predictive analysis.

ABS advanced solutions business development manager Pantelis Skinitis said shipowners need to change passwords on operational technology, such as ECDIS and radar, as some remain unchanged since they were originally commissioned on the ship. He also advised owners to verify vendors and service engineers and that their USB sticks are clean of malware.

ABS has created cyber safety guidance for ship OT, particularly for ships coming into US ports and terminals. In its development, ABS identified the risks, vulnerabilities and threats to OT. “Managing connection points and human resource deals with the biggest threat to OT systems on board,” said Mr Skinitis.

DNV GL has developed new class notations covering cyber security of newbuildings. It has also produced an online video for instructing shipping companies to become more aware of cyber threats. During the summit, DNV GL maritime cyber security service manager Patrick Rossi said ship operators should set up multiple barriers to prevent hackers.

These should include firewalls, updated antivirus, patch management, threat intelligence, intrusion detection, emergency recovery and awareness testing. OT should be segregated from open networks, only official ENC-provider USBs and update disks should be used and cleaned of malware before being inserted into ECDIS and these systems should be segregated from the internet.

Cyber regulations and guidance for shipping

EU General Data Protection regulation (GDPR) came into effect from 25 May 2018

IMO – Resolution MSC.428(98) – from January 2021 cyber security will be included in the ISM Code

TMSA 3 – cyber security was added to tanker management and assessment in January 2018; EU directive on the security of networks and information systems (NIS Directive) from May 2018

EU privacy rule (PECR) of individuals traffic and location data

Rightship added cyber security to inspection checklist

BIMCO – guidelines based on International Association of Classification Societies

 

CLICK – SOURCE READ FULL ARTICLE


TMSA 3, From January 2018, tanker operators are required to use TMSA3 to monitor and improve performance. In comparison with TMSA2, the new edition of TMSA is more extended in length and presents new challenges to ship operators with the introduction of new requirements.

It is noticeable that for the first time, this self-assessment tool for oil tankers introduces maritime security as Element 13 referring also to cyber security.

Cyber security is currently one of the most discussed topics on the industry and many considerable efforts have been made so far to mitigate threats. Thus, TMSA 3 aims to establish procedures in order to respond to industry’s needs.

‘’For the first time, TMSA introduces maritime security as Element 13 including cyber security’’

Also it features an expanded best practice guidance to complement the KPIs and enhanced guidelines for risk assessment, auditing and review ashore and onboard along with guidance for all related tools to be employed.

Other major changes introduced are the expansion of Element 6 on Cargo, Ballast, Tank Cleaning, Bunkering, Mooring & Anchoring Operations, and an updated Element 10 combining Environmental and Energy Management.

In the latest edition, special focus has been given on the continuous improvement cycle by taking into consideration additional KPIs towards effective performance management. Specifically, TMSA3 introduces 85 new KPIs in total. In this context, 25 KPIs have moved to a lower level and there are indexes concerning customer focus, leadership and engagement of people.

On the whole, the TMSA3 addresses issues regarding performance management. The method that a shipping company uses to measure performance is a prominent topic for discussion within the maritime industry. The new edition makes an effort to overhaul the process, not only with the streamline of KPIs but also with the introduction of non-financial measurements and the assessment of soft skills.

Furthermore, TMSA3 introduces a different approach by focusing on the human element and behavioral safety suggesting that crew competence is the tool for crew retention and development.

TMSA 3 at a glance

Expanded best practice guidance to complement the KPIs.
Revised and enhanced best practice guidance to remove ambiguity and duplication.
Additional requirements for HSSE strategic planning, KPI setting and performance monitoring, review and improvement.
Streamlining and merging of elements to improve consistency and make self-assessment easier.
Enhanced guidelines for risk assessment, auditing and review ashore and onboard along with guidance for all related tools to be employed.
Extensively Revised Element 6 and 6A – Cargo, Ballast, Tank Cleaning, Bunkering, Mooring and Anchoring Operations, with additional KPIs and guidance.
Extensively Revised Element 10 – Environmental and Energy Management (previously Environmental Management) incorporates the OCIMF Energy Efficiency and Fuel Management paper that was a supplement to the TMSA 2.
A New element: Element 13 – Maritime Security.

SOURCE READ FULL ARTICLE


Company DETAILS

SHIP IP LTD
VAT:BG 202572176
Rakovski STR.145
Sofia,
Bulgaria
Phone ( +359) 24929284
E-mail: sales(at)shipip.com

ISO 9001:2015 CERTIFIED